Multivariate Timeseries Forecast with Lead and Lag Timesteps Using LSTM¶

Why Multivariate and how can it help to make better predictions?

We can consider multivariate timeseries as regression problem with independent variables being the features of the previous lag (till t-1)along with the independent values of time t. With this approach there is lot more control on the forecast than just the previous timestamps.

From the above figure we can see that, along with the lag features, lead=2 (t+2) timesteps is also considered to make the forecast. This gives us more control on the factors effecting the forecast. In many cases we know that some of the future factors also effects our current time predictions. With these approaches, the decision making team can really simulate the forecast based on various input values of independent features.

Implementation of Forecast model using LSTM¶

Now let us see how to implement the multivariate timeseries with both lead and lag feature.

The major difference between using a LSTM for a regression task to timeseries is, that in timeseries lead and lag timestamp data needs to be considered. Lets define a function which can just do this based on the lead and lag as a parameter

Out[170]:
Unnamed: 0 Date_excel Rainfall_Terni Flow_Rate_Lupa doy Month Year ET01 Infilt_ Infiltsum ... Infilt_M6 Infilt_M6_diff Rainfall_Terni_scale_12_calculated_index SMroot Neradebit smian DroughtIndex Deficit PET_hg GWETTOP
0 2010-01-01 2010-01-01 40.8 82.24 1.0 1.0 2010.0 1.338352 1.934648 1.934648 ... 20.984370 12.824615 1.074801 0.105768 4.548065 0.607917 1.000000 0.0 2.094607 0.88
1 2010-01-02 2010-01-02 6.8 88.90 2.0 1.0 2010.0 1.701540 1.571460 3.506108 ... 5.949230 1.517793 1.074801 0.105766 4.546129 0.622538 0.999998 0.0 2.996092 0.84
2 2010-01-03 2010-01-03 0.0 93.56 3.0 1.0 2010.0 0.938761 2.334239 5.840347 ... 0.000000 0.000000 1.074801 0.105764 4.544194 0.637159 0.999996 0.0 1.934498 0.84
3 2010-01-04 2010-01-04 4.2 96.63 4.0 1.0 2010.0 0.996871 2.276129 8.116476 ... 3.701564 0.792433 1.074801 0.105761 4.542258 0.651780 0.999994 0.0 1.625804 0.84
4 2010-01-05 2010-01-05 26.0 98.65 5.0 1.0 2010.0 1.278242 1.994758 10.111234 ... 13.467998 1.974067 1.074801 0.105759 4.540323 0.666401 0.999992 0.0 1.993541 0.89

5 rows × 41 columns

Out[171]:
Unnamed: 0 Date_excel Rainfall_Terni Flow_Rate_Lupa doy Month Year ET01 Infilt_ Infiltsum ... Infilt_M6 Infilt_M6_diff Rainfall_Terni_scale_12_calculated_index SMroot Neradebit smian DroughtIndex Deficit PET_hg GWETTOP
3828 2020-06-25 2020-06-25 0.0 74.29 177.0 6.0 2020.0 4.030210 -4.030210 -541.652567 ... 0.0 0.0 0.122602 0.127096 4.345 1.160797 1.040964 15.897778 5.772770 0.52
3829 2020-06-26 2020-06-26 0.0 73.93 178.0 6.0 2020.0 4.171681 -4.171681 -545.824247 ... 0.0 0.0 0.122602 0.127512 4.272 1.149976 1.036377 16.560185 6.107339 0.51
3830 2020-06-27 2020-06-27 0.0 73.60 179.0 6.0 2020.0 4.449783 -4.449783 -550.274031 ... 0.0 0.0 0.122602 0.127928 4.199 1.139156 1.030895 17.222592 6.540321 0.50
3831 2020-06-28 2020-06-28 0.0 73.14 180.0 6.0 2020.0 4.513588 -4.513588 -554.787618 ... 0.0 0.0 0.122602 0.128345 4.126 1.128336 1.024516 17.885000 6.593228 0.49
3832 2020-06-29 2020-06-29 0.0 72.88 181.0 6.0 2020.0 4.510906 -4.510906 -559.298525 ... 0.0 0.0 0.122602 0.128761 4.053 1.117516 1.017240 18.547407 6.479413 0.48

5 rows × 41 columns

Out[172]:
0   -0.077870
1   -0.077870
2   -0.051091
3   -0.032286
4   -0.020689
Name: α1, dtype: float64
Out[178]:
Unnamed: 0 Date_excel Rainfall_Terni Flow_Rate_Lupa doy Month Year ET01 Infilt_ Infiltsum ... Rainfall_Terni_scale_12_calculated_index SMroot Neradebit smian DroughtIndex Deficit PET_hg GWETTOP α1_OK α4
0 2010-01-01 2010-01-01 40.8 82.24 1.0 1.0 2010.0 1.338352 1.934648 1.934648 ... 1.074801 0.105768 4.548065 0.607917 1.000000 0.0 2.094607 0.88 -0.005 0.004800
1 2010-01-02 2010-01-02 6.8 88.90 2.0 1.0 2010.0 1.701540 1.571460 3.506108 ... 1.074801 0.105766 4.546129 0.622538 0.999998 0.0 2.996092 0.84 -0.015 -0.010000
2 2010-01-03 2010-01-03 0.0 93.56 3.0 1.0 2010.0 0.938761 2.334239 5.840347 ... 1.074801 0.105764 4.544194 0.637159 0.999996 0.0 1.934498 0.84 -0.015 -0.011667
3 2010-01-04 2010-01-04 4.2 96.63 4.0 1.0 2010.0 0.996871 2.276129 8.116476 ... 1.074801 0.105761 4.542258 0.651780 0.999994 0.0 1.625804 0.84 -0.015 -0.012500
4 2010-01-05 2010-01-05 26.0 98.65 5.0 1.0 2010.0 1.278242 1.994758 10.111234 ... 1.074801 0.105759 4.540323 0.666401 0.999992 0.0 1.993541 0.89 -0.015 -0.015000

5 rows × 43 columns

Out[179]:
Unnamed: 0 Date_excel Rainfall_Terni Flow_Rate_Lupa doy Month Year ET01 Infilt_ Infiltsum ... Rainfall_Terni_scale_12_calculated_index SMroot Neradebit smian DroughtIndex Deficit PET_hg GWETTOP α1_OK α4
3822 2020-06-19 2020-06-19 0.2 76.39 171.0 6.0 2020.0 3.463793 -3.263793 -518.987061 ... 0.122602 0.124598 4.783 1.206395 1.049658 11.923333 5.152927 0.58 0.004987 0.003689
3823 2020-06-20 2020-06-20 0.0 76.01 172.0 6.0 2020.0 3.333015 -3.333015 -522.320075 ... 0.122602 0.125014 4.710 1.205237 1.050450 12.585741 5.203840 0.56 0.004880 0.004098
3824 2020-06-21 2020-06-21 0.0 75.64 173.0 6.0 2020.0 3.412032 -3.412032 -525.732107 ... 0.122602 0.125430 4.637 1.204077 1.050345 13.248148 5.040534 0.56 0.004372 0.003658
3825 2020-06-22 2020-06-22 0.0 75.31 174.0 6.0 2020.0 3.742202 -3.742202 -529.474309 ... 0.122602 0.125847 4.564 1.193257 1.049344 13.910555 5.448369 0.56 0.005726 0.004991
3826 2020-06-23 2020-06-23 0.0 74.88 175.0 6.0 2020.0 3.917863 -3.917863 -533.392172 ... 0.122602 0.126263 4.491 1.182437 1.047447 14.572963 5.861305 0.54 0.004014 0.004748
3827 2020-06-24 2020-06-24 0.0 74.58 176.0 6.0 2020.0 4.230186 -4.230186 -537.622357 ... 0.122602 0.126679 4.418 1.171617 1.044654 15.235370 6.209193 0.52 0.003896 0.004502
3828 2020-06-25 2020-06-25 0.0 74.29 177.0 6.0 2020.0 4.030210 -4.030210 -541.652567 ... 0.122602 0.127096 4.345 1.160797 1.040964 15.897778 5.772770 0.52 0.004858 0.004624
3829 2020-06-26 2020-06-26 0.0 73.93 178.0 6.0 2020.0 4.171681 -4.171681 -545.824247 ... 0.122602 0.127512 4.272 1.149976 1.036377 16.560185 6.107339 0.51 0.004474 0.004310
3830 2020-06-27 2020-06-27 0.0 73.60 179.0 6.0 2020.0 4.449783 -4.449783 -550.274031 ... 0.122602 0.127928 4.199 1.139156 1.030895 17.222592 6.540321 0.50 0.006270 0.004874
3831 2020-06-28 2020-06-28 0.0 73.14 180.0 6.0 2020.0 4.513588 -4.513588 -554.787618 ... 0.122602 0.128345 4.126 1.128336 1.024516 17.885000 6.593228 0.49 0.004800 0.005100

10 rows × 43 columns

Out[181]:
82.24
Out[42]:
4.409641801706855
Out[43]:
4.409641801706855
Out[44]:
9.068627239003707
Out[182]:
-0.0031319072300002304
Out[183]:
0.0031319072300002304

Lupa['α1']= Lupa.log_Flow.shift(-1) -Lupa.log_Flow

Out[188]:
Unnamed: 0 Date_excel Rainfall_Terni Flow_Rate_Lupa doy Month Year ET01 Infilt_ Infiltsum ... Rainfall_Terni_scale_12_calculated_index SMroot Neradebit smian DroughtIndex Deficit PET_hg GWETTOP α1_OK α4
2378 2016-07-06 2016-07-06 0.2 145.36 188.0 7.0 2016.0 4.27521 -4.07521 -422.631172 ... 0.068649 0.129659 4.941290 -0.614314 0.919147 39.429314 5.688181 0.46 0.015 0.006657
2908 2017-12-18 2017-12-18 0.0 55.51 352.0 12.0 2017.0 0.85813 -0.85813 -790.968845 ... 0.645122 0.104350 4.419677 -0.177246 0.991808 0.000000 2.144621 0.64 0.015 0.003307

2 rows × 43 columns

Lupa['α4']= Lupa['α1'].rolling(4, center=True).mean().fillna( Lupa['α1'].median() )

Lupa['α10']= Lupa['α1'].rolling(10, center=True).mean().fillna( Lupa['α1'].median() )

Out[192]:
Index(['Unnamed: 0', 'Date_excel', 'Rainfall_Terni', 'Flow_Rate_Lupa', 'doy',
       'Month', 'Year', 'ET01', 'Infilt_', 'Infiltsum', 'Rainfall_Ter', 'P5',
       'Flow_Rate_Lup', 'Infilt_m3', 'Week', 'log_Flow', 'Lupa_Mean99_2011',
       'Rainfall_Terni_minET', 'Infiltrate', 'log_Flow_10d', 'log_Flow_20d',
       'α10', 'α20', 'log_Flow_10d_dif', 'log_Flow_20d_dif', 'α10_30',
       'Infilt_7YR', 'Infilt_2YR', 'α1', 'α1_negatives', 'ro', 'Infilt_M6',
       'Infilt_M6_diff', 'Rainfall_Terni_scale_12_calculated_index', 'SMroot',
       'Neradebit', 'smian', 'DroughtIndex', 'Deficit', 'PET_hg', 'GWETTOP',
       'α1_OK', 'α4'],
      dtype='object')
Out[194]:
Rainfall_Terni_minET log_Flow Lupa_Mean99_2011 Infilt_M6 α1_OK α10 SMroot Neradebit smian DroughtIndex Deficit PET_hg GWETTOP
0 39.461648 4.409642 117.814892 20.984370 -0.005 0.004800 0.105768 4.548065 0.607917 1.000000 0.0 2.094607 0.88
1 5.098460 4.487512 120.382310 5.949230 -0.015 0.004800 0.105766 4.546129 0.622538 0.999998 0.0 2.996092 0.84
2 0.000000 4.538603 118.858733 0.000000 -0.015 -0.029459 0.105764 4.544194 0.637159 0.999996 0.0 1.934498 0.84
3 3.203129 4.570889 121.065519 3.701564 -0.015 -0.027267 0.105761 4.542258 0.651780 0.999994 0.0 1.625804 0.84
4 24.721758 4.591578 119.763396 13.467998 -0.015 -0.028786 0.105759 4.540323 0.666401 0.999992 0.0 1.993541 0.89
Out[225]:
Rainfall_Terni_minET log_Flow Lupa_Mean99_2011 Infilt_M6 α1_OK α10 SMroot Neradebit smian DroughtIndex Deficit PET_hg GWETTOP
3814 4.009934 4.370966 163.535143 5.104967 0.006212 0.003989 0.121267 5.367 1.215667 1.024150 6.624074 3.286200 0.67
3815 0.000000 4.364753 163.327754 0.000000 0.004333 0.004190 0.121683 5.294 1.214508 1.027398 7.286481 5.497035 0.58
3816 0.000000 4.360420 162.317328 0.000000 0.004994 0.004186 0.122100 5.221 1.213350 1.030798 7.948889 5.540033 0.57
3817 0.000000 4.355426 161.169102 0.219185 0.006052 0.005135 0.122516 5.148 1.212190 1.034348 8.611296 4.030759 0.57
3818 1.800428 4.349374 160.612387 3.300214 0.003752 0.005080 0.122932 5.075 1.211032 1.038050 9.273704 4.253079 0.64
3819 0.000000 4.345622 160.055672 0.000000 0.003246 0.004972 0.123349 5.002 1.209872 1.041904 9.936111 4.243349 0.67
3820 6.933015 4.342376 158.942241 8.466507 0.006131 0.004915 0.123765 4.929 1.208713 1.045385 10.598518 4.371786 0.62
3821 0.000000 4.336244 158.457154 1.142865 0.000393 0.004279 0.124181 4.856 1.207555 1.047970 11.260926 4.987571 0.61
3822 0.000000 4.335852 157.759221 0.000000 0.004987 0.004237 0.124598 4.783 1.206395 1.049658 11.923333 5.152927 0.58
3823 0.000000 4.330865 156.506611 0.000000 0.004880 0.004498 0.125014 4.710 1.205237 1.050450 12.585741 5.203840 0.56
3824 0.000000 4.325985 155.880306 0.000000 0.004372 0.004314 0.125430 4.637 1.204077 1.050345 13.248148 5.040534 0.56
3825 0.000000 4.321613 155.254001 0.000000 0.005726 0.004453 0.125847 4.564 1.193257 1.049344 13.910555 5.448369 0.56
3826 0.000000 4.315887 154.398320 0.000000 0.004014 0.004355 0.126263 4.491 1.182437 1.047447 14.572963 5.861305 0.54
3827 0.000000 4.311872 154.001392 0.000000 0.003896 0.004140 0.126679 4.418 1.171617 1.044654 15.235370 6.209193 0.52
3828 0.000000 4.307976 152.713987 0.000000 0.004858 0.004250 0.127096 4.345 1.160797 1.040964 15.897778 5.772770 0.52
3829 0.000000 4.303119 151.252610 0.000000 0.004474 0.004373 0.127512 4.272 1.149976 1.036377 16.560185 6.107339 0.51
3830 0.000000 4.298645 151.111899 0.000000 0.006270 0.004387 0.127928 4.199 1.139156 1.030895 17.222592 6.540321 0.50
3831 0.000000 4.292375 150.104384 0.000000 0.004800 0.004831 0.128345 4.126 1.128336 1.024516 17.885000 6.593228 0.49

Getting the data ready with lead and lag factors¶

The above functions converts the data into timeseries series with customized n_lag and n_lead steps. The output of this function contains data of lag and lead steps as columns with (t-n) or (t+n) timestamps

Out[197]:
(3832, 13)
Out[199]:
var13(t-1) var1(t) var2(t) var3(t) var4(t) var5(t) var6(t) var7(t) var8(t) var9(t) var10(t) var11(t) var12(t) var13(t)
3433 0.77 11.140963 4.604770 175.539318 12.370481 -0.015000 -0.015471 0.114055 7.306774 1.553723 0.994103 0.000000 3.531847 0.79
3434 0.79 7.092983 4.646600 173.173278 8.446492 -0.015000 -0.018052 0.114097 7.402581 1.564240 0.995003 0.000000 3.790510 0.76
3435 0.76 7.480072 4.676653 172.372999 8.540036 -0.015000 -0.018758 0.114138 7.498387 1.574756 0.996043 0.000000 3.149089 0.78
3436 0.78 6.950440 4.701843 171.920668 7.975220 -0.015000 -0.018959 0.114179 7.594194 1.585272 0.997222 0.000000 3.038312 0.76
3437 0.76 0.000000 4.724019 171.468337 0.000000 -0.015000 -0.019481 0.114221 7.690000 1.595789 0.998541 0.000000 4.016658 0.73
3438 0.73 0.000000 4.742669 170.789783 0.000000 -0.015000 -0.020379 0.114262 7.573000 1.606305 1.000000 0.000000 4.710386 0.73
3439 0.73 0.000000 4.758406 170.424495 0.000000 -0.014733 -0.021182 0.114303 7.456000 1.571215 1.001598 2.042404 5.001716 0.72
3440 0.72 0.000000 4.773139 169.241475 0.000000 -0.013018 -0.021962 0.114345 7.339000 1.536125 1.003336 4.084807 4.935763 0.71
3441 0.71 0.000000 4.786158 168.649965 0.000000 -0.012439 -0.022481 0.114386 7.222000 1.501035 1.005213 6.127211 5.270744 0.70
3442 0.70 0.000000 4.798597 168.058455 0.000000 -0.011227 -0.020505 0.114427 7.105000 1.465945 1.007230 8.169615 5.364919 0.67
3443 0.67 0.000000 4.809824 166.979819 0.000000 -0.010377 -0.017360 0.114469 6.988000 1.430855 1.009387 10.212018 5.166235 0.65
3444 0.65 0.000000 4.820201 167.386588 0.000000 -0.002658 -0.014621 0.114510 6.871000 1.395765 1.011683 12.254422 5.975295 0.63
3445 0.63 0.000000 4.822859 165.901183 0.000000 -0.015000 -0.014077 0.114551 6.754000 1.360675 1.014119 14.296826 6.325639 0.62
3446 0.62 0.000000 4.842611 165.763054 0.000000 -0.005270 -0.012386 0.114593 6.637000 1.325585 1.016694 16.339230 6.388215 0.59
3447 0.59 0.000000 4.847881 164.752958 0.000000 -0.010147 -0.011536 0.114634 6.520000 1.290495 1.019409 18.381633 5.553434 0.59
3448 0.59 0.000000 4.858028 163.535143 0.000000 -0.007505 -0.010713 0.114675 6.403000 1.255405 1.022264 20.424037 5.656065 0.57
3449 0.57 0.000000 4.865532 163.327754 0.000000 -0.005381 -0.009777 0.114717 6.286000 1.202354 1.025258 22.466441 5.889984 0.56
3450 0.56 0.000000 4.870913 162.317328 0.000000 -0.004589 -0.008935 0.114758 6.169000 1.149304 1.028391 24.508844 6.349167 0.55
3451 0.55 0.000000 4.875503 161.169102 0.000000 -0.004188 -0.008109 0.114799 6.052000 1.096253 1.031665 26.551248 7.182276 0.54
3452 0.54 0.000000 4.879691 160.612387 0.000000 -0.002656 -0.007252 0.114841 5.935000 1.043203 1.035077 28.593652 5.982390 0.53
3453 0.53 0.000000 4.882347 160.055672 0.000000 -0.002271 -0.006442 0.114882 5.818000 0.990152 1.038630 30.636055 6.189987 0.52
3454 0.52 1.306480 4.884618 158.942241 3.453240 -0.002794 -0.006455 0.114923 5.701000 0.937102 1.041517 32.678459 6.074026 0.52
3455 0.52 0.000000 4.887412 158.457154 0.000000 -0.001582 -0.004638 0.114965 5.584000 0.884051 1.042935 34.720863 5.854209 0.52
3456 0.52 0.000000 4.888995 157.759221 0.000000 -0.000075 -0.004119 0.115006 5.467000 0.831001 1.042882 36.763266 5.998155 0.51
3457 0.51 0.000000 4.889070 156.506611 0.000000 0.007405 -0.002364 0.115047 5.350000 0.777950 1.041361 38.805670 6.350226 0.50
3458 0.50 0.000000 4.881665 155.880306 0.000000 -0.008308 -0.002444 0.115089 5.233000 0.724900 1.038369 40.848074 6.589590 0.49
3459 0.49 0.000000 4.889973 155.254001 0.000000 -0.000301 -0.001936 0.115130 5.116000 0.685513 1.033907 42.890477 5.823888 0.49
3460 0.49 0.000000 4.890274 154.398320 0.000000 0.001430 -0.001334 0.115171 4.999000 0.646126 1.027976 44.932881 6.191218 0.48
3461 0.48 0.000000 4.888844 154.001392 0.000000 0.001356 -0.000780 0.115213 4.882000 0.606738 1.020575 46.975285 5.938021 0.48
3462 0.48 0.000000 4.887488 152.713987 0.000000 0.001358 -0.000378 0.115254 4.765000 0.567351 1.011705 49.017689 6.331419 0.47
3463 0.47 0.000000 4.886130 151.252610 0.000000 0.001511 0.000000 0.115295 4.648000 0.527964 1.001364 51.060092 6.652679 0.46
3464 0.46 0.000000 4.884618 151.111899 0.000000 0.001741 0.000453 0.115337 4.531000 0.488577 0.989554 53.102496 7.210034 0.45
3465 0.45 0.000000 4.882878 150.104384 0.000000 0.002655 0.000877 0.115378 4.414000 0.449189 0.976274 55.144900 7.138806 0.45
3466 0.45 0.000000 4.880223 149.409657 0.000000 0.001748 0.001060 0.115419 4.297000 0.409802 0.961524 57.187303 6.510536 0.45
3467 0.45 0.000000 4.878474 148.712596 0.000000 0.000761 0.000395 0.115461 4.180000 0.370415 0.945305 59.229707 7.678308 0.44
3468 0.44 0.000000 4.877713 147.320807 0.000000 0.001448 0.001371 0.115502 4.186129 0.331027 0.927616 61.272111 7.203015 0.45
3469 0.45 0.000000 4.876265 146.856294 0.000000 0.001908 0.001592 0.115543 4.192258 0.323979 0.908457 63.486426 7.461562 0.44
3470 0.44 0.000000 4.874357 145.998608 0.000000 0.002754 0.001724 0.115585 4.198387 0.316930 0.887828 65.700742 7.091059 0.44
3471 0.44 0.000000 4.871603 144.676409 0.000000 0.002224 0.001811 0.115626 4.204516 0.309881 0.865730 67.915057 6.737927 0.45
3472 0.45 0.000000 4.869379 144.302931 0.000000 0.002229 0.001898 0.115667 4.210645 0.302833 0.842162 70.129372 6.867434 0.44
3473 0.44 0.000000 4.867150 143.423800 0.000000 0.003160 0.002063 0.115709 4.216774 0.295784 0.817124 72.343688 7.176614 0.42

from tensorflow.keras.layers import Normalization

Normalization by StandardScaler

This code helps in dropping the future Y (at t+n) while training the models. Once we drop the future Y and we have the reframed data, its as simple as training the LSTM for a regression problem.

(3802, 402) (3802, 1)
(3665, 1, 402) (137, 1, 402)

Creating a LSTM model¶

The first LSTM layer contains estimators for 3 years. The length of the test targets is 300, thus 10 months.

Out[134]:
3660
3665 1 402

Once the model is ready we can train the model on the train data and test it on the test. We add some training checkpoints which can be used to efficiently train and earlystop a model.

3665 1 402

predictions for our test data¶

Once model is trained , we can get the predictions for our test data

5/5 [==============================] - 1s 19ms/step
Out[208]:
array([[0.09541333],
       [0.09553236],
       [0.09676951]], dtype=float32)
(137, 1, 402) (137, 1)
Out[210]:
array([0.14965787, 0.14949162, 0.15430685, 0.15563299, 0.16076282])
  1. We have to reverse the normalization
  2. next we'll reverse the transformation of the logarithms of the flow rates
(137, 1) (137, 1)

tf.math.exp( test_X[:,0,1] )

history.history# .loss

Out[212]:
array([[1.1001134],
       [1.1002445]], dtype=float32)
Out[213]:
array([[107.73059],
       [107.73747]], dtype=float32)
Out[214]:
(137, 402)

var2_t is the 10 last feature col

Out[215]:
array([4.45560468, 4.94125655, 4.45560468, 4.45560468, 4.45560468,
       4.45560468, 4.68121901, 4.45560468, 4.45560468, 4.45560468,
       4.45560468, 4.45560468, 4.45560468, 4.69108166, 4.69663514,
       4.80012583, 4.45560468, 5.59022869, 5.79308962, 5.02732022])

α1_OK & α10¶

batchsize=366, predictions = 137

Out[221]:
4.9648447

α1¶

batchsize=183, predictions = 300

MeanAbsolutePercentageError¶

the predictions over 300 days vs. the observed outflows.

Out[119]:
9.235593
Out[88]:
973.3673

values = Lupa[["Rainfall_Terni" ,"log_Flow", "Infilt_M6", 'α10','Neradebit', 'smian', 'DroughtIndex', 'Deficit', 'PET_hg']] MeanAbsolutePercentageError 4.4716454

Out[46]:
array([-0.32206752,  0.17360827, -0.26424101, ...,  0.04898375,
        1.4423285 , -0.84989194])